

Pedestrian crossing behaviour in signalized crossings in middle size cities in Greece

UNIVERSITY OF THESSALY
Department of Civil Engineering
Pedion Areos, Volos, Greece
Nikolaos Eliou
Associate Professor
neliou@uth.gr
Athanasios Galanis
Dr Transportation Engineer
atgalanis@uth.gr

14 - 16 May 2012, Schwechat, Austria

Introduction

> Pedestrians cross the streets without noticing the incoming traffic, usually because their attention is distracted.
> Pedestrians usually miscalculate the traffic gaps.
> Pedestrians walk across the street, usually due to lack of space on sidewalks.
> Pedestrians cross the streets in midblock location or out of designated crosswalks.
> Pedestrians do not follow the indications of the traffic lights.

Objective

> Examination of the pedestrian crossing behaviour in 12 signalized crosswalks across main and collector urban arterials in the center of the city Volos, Greece.
> Collection of video data and analysis with a new software: Captiv L2100.
> Pedestrians were categorized according to their sex and age:

- Sex (men, women).
- Age (<20, 20-50, >50 years old).
- Traffic light (green, red).
> Main questions of the study:
- How much is the pedestrian crossing time.
- How much is the pedestrian crossing speed.
- Do pedestrians cross the street with red or green traffic light.

Study area: City of Volos

> Medium scale Greek city
> Thessaly, central Greece
> Important harbor
> Population of 120.000 citizens

Study area: Center of the city

Crosswalks No1 and No2

Crosswalks No3 and No4

Crosswalks No5 and No6

Crosswalks No7 and No8

::: - 000

Crosswalks No9 and N10

Crosswalks No11 and No12

Collection of Video Data

> June 2010
> Peak traffic hours:12:00-14:00
> Video camera
> Full vision of each crosswalk
> Duration of video data in each crosswalk: 30 min

Data analysis (Captiv L2100)

> Description Protocol

- Code: 020 mrs (abbreviation of the characteristic)
- Coding: 020 man red start (analytic presentation of the characteristic)
- Class: 1man
- C: Colour of each code
- ת BENIZELOU.cpr

Statistical processing areasDescription protocol

- BENIZELOU.pro
- ${ }_{\text {- }}^{\text {Le }} 1$ man

- 1 woman
${ }^{\text {m}}$ 늘 2 man
- 2 woman
:
:
- -
- 3 woman
-

뜬 4 woman
${ }^{\text {m}} 5$ man

- ${ }^{\text {L }} 5$ woman
- $\quad 6$ man

뜬 6 man
鮀 6 woman

Video Configuration

> Formation of the "Video Configuration" file.
> Creation of the file with the entrance of the videos in the project.
> Characterization of each video according to its description name, the save location of the file, the start and end time and its duration (about 15 min).

Video configuration Options

Video Sequence

> Reference of each button to a coding and its identification colour.
> Running of the videos and marking of each pedestrian start and stop time, based on the coding.
> Ability to stop the video (pause), play it back or synchronize it in a selected time when a pedestrian crossed the street.
> All the registrations were saved in a "Post Coding" file, which refers to the start and stop time of the pedestrian crossing according to the coding.

Video Sequence

\author{

- -7 Video configuration
 咄 Video configuration
 - Video sequence
 50016_06_01.avi
 16_06_02.avi
 16_06_03.avi
 16_06_04.avi
 16_06_05.avi
 16_06_06.avi
 21_06_01.avi
 21_06_02.avi
 21_06_03.avi
 21_06_04.avi
 21_06_05.avi
 21_06_06.avi
}

BENIZELOU．cpi
Top synchro \leftrightarrow Statistical processing areas
Post Coding

						$\square \times$
	Time code	Code	Coding	Recoding	Class	\triangle
	27／11／2010 08：13：16．761	50 mgs	50 man green start	50 man green start	6 man	
	27／11／2010 08：13：21．286	50 mgt	50 man green stop	50 man green stop	6 man	
	27／11／2010 08：13：24．129	2050wgs	2050 woman green start	2050 woman green start	5 woman	
	27／11／2010 08：13：29．333	2050wgt	2050 woman green stop	2050 woman green stop	5 woman	
	27／11／2010 08：13：39．490	020wgs	020 woman green start	020 woman green start	4 woman	
	27／11／2010 08：13：43．963	020wgt	020 woman green stop	020 woman green stop	4 woman	
	27／11／2010 08：13：49．179	50 mgs	50 man green start	50 man green start	6 man	
	27／11／2010 08：13：52．763	50 wgs	50 woman green start	50 woman green start	6 woman	
	27／11／2010 08：13：54．374	50 mgt	50 man green stop	50 man green stop	6 man	
	27／11／2010 08：13：57．973	50wgt	50 woman green stop	50 woman green stop	6 woman	
	27／11／2010 08：14：30．998	50 mrs	50 man red start	50 man red start	3 man	
	27／11／2010 08：14：31．661	50wrs	50 woman red start	50 woman red start	3 woman	
	27／11／2010 08：14：33．496	50 mrs	50 man red start	50 man red start	3 man	
	27／11／2010 08：14：35．039	50 mrt	50 man red stop	50 man red stop	3 man	
	27／11／2010 08：14：36．535	50wgt	50 woman green stop	50 woman green stop	6 woman	
	27／11／2010 08：14：37．853	50 mrt	50 man red stop	50 man red stop	3 man	
	27／11／2010 08：14：55．239	50 wgs	50 woman green start	50 woman green start	6 woman	
	27／11／2010 08：14：55．239	50wgs	50 woman green start	50 woman green start	6 woman	
	27／11／2010 08：15：01．337	50wgt	50 woman green stop	50 woman green stop	6 woman	
	27／11／2010 08：15：01．337	50wgt	50 woman green stop	50 woman green stop	6 woman	
	27／11／2010 08：15：01．337	2050wgs	2050 woman green start	2050 woman green start	5 woman	
	27／11／2010 08：15：06．416	2050wgt	2050 woman green stop	2050 woman green stop	5 woman	
	27／11／2010 08：17：15．994	020 mgs	020 man green start	020 man green start	4 man	
	27／11／2010 08：17：17．088	2050wgs	2050 woman green start	2050 woman green start	5 woman	
	27／11／2010 08：17：19．799	020 mgt	020 man green stop	020 man green stop	4 man	
4		วกอก．．．－4	าnen ．．．．－．．．．－－－－．．－1－－	ากอก ．．．．－．－．．－－．－．．－t－－	г ．．．．．．－．．	

${ }^{-}$－ 4 man
－ － 4 woman

－${ }_{\text {－}}^{\text {L }}$ woman
${ }_{\text {－}}^{\text {L．}} 6 \mathrm{man}$
－${ }_{\text {晋 }} 6 \mathrm{man}$
－ 6 woman
-9 Observations statement
（x）Post coding 16＿06＿01．Ilv
（7）Post coding 16＿06＿02．rv
（7）Post coding 16＿06＿03．rlv
（3）Post coding 16＿06＿04．Iv
（v）Post coding 16＿06＿05．rlv
（7）Post coding 16＿06＿06．Iv
（7）Post coding 21＿06＿01．Iv
（7）Post coding 21＿06＿02．rlv
（7）Post coding 21＿06＿03．rlv
（7）Post coding 21＿06＿04．Ily
（7）Post coding 21＿06＿05．Ilv
0 Post coding 21＿06＿06．Ily
Video configuration
怒 Video configuration
\square

安解16＿06＿02．avi 열 16＿06＿03．avi 50］16＿06＿04．avi 50역 16＿06＿05．avi 역 16＿06＿06．avi ＊20 21＿06＿01．avi ＊21 21＿06＿02．avi ＊20 21＿06＿03．avi 50721＿06＿04．avi ＊20 21＿06＿05．avi ＊in 21＿06＿06．avi

Time curves

Statistical processing areas

> After the creation of the post coding file, all the data were exported in the excel software for further analysis.
> The basic benefit of this analysis procedure was the speed, convenience and reliability of the process, comparing to the manually video analysis.

Whilatistical processing areas						
Equation : Employé de bureau - Angle Coude > 90						
N	Start time	End time	Duration	\% Duration	Interval	\wedge
91	11/03/2002 16:11:25.180	11/03/2002 16:11:26.260	00:00:01.080	1.223	00:00:01.880	
92	11/03/2002 16:11:28.140	11/03/2002 16:11:29.700	00:00:01.560	1.766	00:00:00.640	
93	11/03/2002 16:11:30.340	11/03/2002 16:11:30.860	00:00:00.520	0.589	00:00:05.200	
94	11/03/2002 16:11:36.060	11/03/2002 16:11:36.220	00:00:00.160	0.181	00:00:01.320	
95	11/03/2002 16:11:37.540	11/03/2002 16:11:37.740	00:00:00.200	0.226	00:00:02.680	
96	11/03/2002 16:11:40.420	11/03/2002 16:11:40.460	00:00:00.040	0.045	00:00:08.280	
97	11/03/2002 16:11:48.740	11/03/2002 16:11:48.900	00:00:00.160	0.181	00:00:02.120	
98	11/03/2002 16:11:51.020	11/03/2002 16:11:52.380	00:00:01.360	1.540	00:00:04.200	
99	11/03/2002 16:11:56.580	11/03/2002 16:11:58.380	00:00:01.800	2.038	00:00:00.640	
100	11/03/2002 16:11:59.020	11/03/2002 16:11:59.300	00:00:00.280	0.317	00:00:01.080	
101	11/03/2002 16:12:00.380	11/03/2002 16:12:00.780	00:00:00.400	0.453	00:00:01.520	
102	11/03/2002 16:12:02.300	11/03/2002 16:12:03.060	00:00:00.760	0.861		
Average:			00:00:00.866	0.980	00:00:01.179	
Total: 102			00:01:28.320	100.00	00:01:59.080	\checkmark

	AGE	SEX	R/G	TIME	V
1	2	A	K	4,98	1,81
2	2	A	K	7,91	1,14
3	3	A	K	6,86	1,31
4	3	A	K	4,83	1,86
5	2	r	K	5,08	1,77
6	2	Γ	K	5,76	1,56
7	2	r	K	6,49	1,39
8	3	r	K	7,23	1,24
9	3	r	K	4,83	1,86
10	1	A	Π	6,93	1,30
11	1	A	Π	7,86	1,15
12	1	A	Π	6,71	1,34
13	1	A	Π	6,81	1,32
14	1	A	Π	6,93	1,30
15	1	A	Π	7,47	1,20
16	1	A	Π	7,20	1,25
17	2	A	Π	7,63	1,18
18	2	A	Π	7,63	1,18
19	2	A	n	5,66	1,59
20	2	A	Π	9,38	0,96
21	2	A	Π	6,41	1,40
22	2	A	Π	7,45	1,21
23	2	A	Π	7,71	1,17
24	2	A	Π	6,23	1,44
25	2	A	Π	6,01	1,50
26	2	A	Π	5,41	1,66
27	2	A	Π	6,26	1,44
28	2	A	n	7,24	1,24
29	2	A	Π	8,42	1,07
30	2	A	π	7,74	1,16
31	2	A	Π	5,46	$1,65$
32	2	A	π	$7,21$	$1,25$
33	3	A	π	$5,84$	$1,54$
34	3	A	π	$7,03$	$1,28$
35	3	A	π	$7,24$	$1,24$
36	3	A	Π	7,93	1,13
37	3	A	Π	5,23	1,72

Results

Traffic flow (1hr)

Traffic (1hr)	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0}$	$\mathbf{1 1}$	$\mathbf{1 2}$
Vehicle	360	348	108	168	1176	924	312	288	384	408	1044	1212
Motorcycle	180	120	120	108	576	240	96	180	60	48	468	456
Bicycle	24	36	12	12	36	24	24	36	12	24	12	24
Bus	0	0	0	0	48	60	0	0	12	12	48	72

Traffic flow (1hr)

Results

Traffic light duration (sec)

Time $(\mathbf{s e c})$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0}$	$\mathbf{1 1}$	$\mathbf{1 2}$
Green	45	45	45	45	30	30	50	50	30	30	35	25
Red	25	25	25	25	40	40	25	25	25	25	35	45
Sum	70	70	70	70	70	70	75	75	55	55	70	70
\%Green	0,64	0,64	0,64	0,64	0,43	0,43	0,67	0,67	0,55	0,55	0,50	0,36
\%Red	0,36	0,36	0,36	0,36	0,57	0,57	0,33	0,33	0,45	0,45	0,50	0,64

Traffic light phase (\%)

Results

Pedestrians crossing during the red traffic light (\%)

Red \%	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0}$	$\mathbf{1 1}$	$\mathbf{1 2}$	AV
$0-20$	0,63	0,00	0,21	0,30	0,00	0,24	0,08	0,44	0,44	0,17	0,18	0,00	0,23
$20-50$	0,25	0,59	0,57	0,35	0,56	0,53	0,85	0,44	0,44	0,57	0,45	1,00	0,55
$50+$	0,13	0,41	0,21	0,35	0,44	0,24	0,08	0,11	0,11	0,26	0,36	0,00	0,22
Men	0,25	0,37	0,36	0,52	0,44	0,71	0,31	0,22	0,22	0,39	0,45	0,25	0,37
Women	0,75	0,63	0,64	0,48	0,56	0,29	0,69	0,78	0,78	0,61	0,55	0,75	0,63
Sum	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00

Results

$\mathbf{L}(\mathbf{m})$	$\mathbf{5 , 5 m}$	$\mathbf{5 , 5 m}$	$\mathbf{4 , 5 m}$	$\mathbf{4 , 5 m}$	$\mathbf{9 m}$	$\mathbf{1 0 m}$	$\mathbf{5 , 5 m}$	$\mathbf{5 , 5 m}$	$\mathbf{4 , 5 m}$	$\mathbf{4 , 5 m}$	$\mathbf{9 m}$	$\mathbf{9 m}$	
$\mathbf{V}(\mathbf{m} / \mathbf{s e c})$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0}$	$\mathbf{1 1}$	$\mathbf{1 2}$	$\mathbf{A V}$
$0-20$	1,26	1,14	1,26	1,25	1,37	1,31	1,36	1,32	1,39	1,29	1,46	1,36	1,31
$20-50$	1,24	1,29	1,25	1,31	1,39	1,38	1,24	1,27	1,33	1,34	1,32	1,23	1,30
$50+$	1,13	1,20	1,06	1,16	1,32	1,31	0,98	1,17	1,25	1,31	1,19	1,11	1,18

Results

$\mathbf{L}(\mathbf{m})$	$\mathbf{5 , 5 m}$	$\mathbf{5 , 5 m}$	$\mathbf{4 , 5 m}$	$\mathbf{4 , 5 m}$	$\mathbf{9 m}$	$\mathbf{1 0 m}$	$\mathbf{5 , 5 m}$	$\mathbf{5 , 5 m}$	$\mathbf{4 , 5 m}$	$\mathbf{4 , 5 m}$	$\mathbf{9 m}$	$\mathbf{9 m}$	
$\mathbf{V}(\mathbf{m} / \mathbf{s e c})$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0}$	$\mathbf{1 1}$	$\mathbf{1 2}$	$\mathbf{A V}$
Men	1,28	1,31	1,22	1,29	1,34	1,42	1,23	1,34	1,38	1,33	1,32	1,25	1,31
Women	1,19	1,20	1,20	1,23	1,39	1,28	1,16	1,25	1,28	1,26	1,27	1,24	1,25

Results

$\mathbf{L}(\mathbf{m})$	$\mathbf{5 , 5 m}$	$\mathbf{5 , 5 m}$	$\mathbf{4 , 5 m}$	$\mathbf{4 , 5 m}$	$\mathbf{9 m}$	$\mathbf{1 0 m}$	$\mathbf{5 , 5 m}$	$\mathbf{5 , 5 m}$	$\mathbf{4 , 5 m}$	$\mathbf{4 , 5 m}$	$\mathbf{9 m}$	$\mathbf{9 m}$	
$\mathbf{V}(\mathbf{m} / \mathbf{s e c})$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0}$	$\mathbf{1 1}$	$\mathbf{1 2}$	$\mathbf{A V}$
Red	1,29	1,33	1,25	1,29	1,55	1,44	1,36	1,34	1,27	1,31	1,32	1,49	1,35
Green	1,22	1,21	1,19	1,25	1,36	1,33	1,16	1,26	1,34	1,29	1,30	1,23	1,26

Conclusions

> The implementation of the Captiv L2100 software was a very useful tool to analyze the pedestrian crossing behaviour with convenience, reliability and speed, using video data.
> The three age groups resulted in a balanced sample:

- 23% (<20 years old)
- 50% (20-50 years old)
- 27% (>50 years old)
> More women walk during the morning peak hours (shopping, unemployment, unable to drive a car):
- 40% (men)
- 60\% (women)
> Pedestrians mainly cross the street illegally where the vehicle traffic flow and speed are lower.
- 85% (green traffic light)
- 15% (red traffic light)

Conclusions

> Older pedestrians cross the streets with lower speed:

- $\mathrm{V}=1,31 \mathrm{~m} / \mathrm{sec}$ (<20 years old)
- $\mathrm{V}=1,30 \mathrm{~m} / \mathrm{sec}$ (20-50 years old)
- $\mathrm{V}=1,18 \mathrm{~m} / \mathrm{sec}$ (>50 years old)
> Men cross the streets faster than women:
- $\mathrm{V}=1,31 \mathrm{~m} / \mathrm{sec}$ (men)
- $\mathrm{V}=1,25 \mathrm{~m} / \mathrm{sec}$ (women)
> Pedestrians cross the street faster during the red traffic light:
- $\mathrm{V}=1,35 \mathrm{~m} / \mathrm{sec}$ (red)
- $\mathrm{V}=1,26 \mathrm{~m} / \mathrm{sec}$ (green)
> The highest crossing speed $(1,55 \mathrm{~m} / \mathrm{sec})$ was noticed during the red light phase across a main urban arterial crosswalk.
> Women and pedestrians 20-50 years old crossed the street more often during the red traffic light phase.

Conclusions

> Pedestrians usually respect the traffic light indications, crossing the street only when they judge that there is a safe traffic gap.
> Pedestrians' crossing behaviour is influenced on their physical skills and road safety education.
> Target:

- Better understanding of pedestrian crossing behaviour in urban crosswalks
- Implementation of focused remedial actions according to a pedestrian road safety audit procedure.

Thank you!

Contact: atgalanis@uth.gr neliou@uth.gr

