

Presentation at REAL CORP 2012 Re-mixing the city: Towards Sustainability and Resilience Multiversum Schwechat, Vienna, Austria

TESTING THE RESILIENCE OF UNDERGROUND INFRASTRUCTURE SOLUTIONS THROUGH AN URBAN FUTURES METHODOLOGY

Hunt, D.V.L., Jefferson, I. and Rogers, C.D.F.

14th to 16th May

Research aim:

This paper presents an **Urban Futures (UF) methodology** that facilitates testing the **future resilience** of any **underground water infrastructure solution** (e.g. potable and non-potable mains water, wastewater and stormwater).

.... to ensure that the solutions we put in place today in the name of sustainability are robust, not matter what the future holds.

UF Methodology:

UF Methodology:

Stage 1a: Solution selection

In this example urban engineers have proposed the introduction of an underground non-potable water supply network (i.e. rainwater harvesting) in order to achieve the following sustainability benefits within the local area:

- **Reduced** consumption of potable (i.e. drinkable) mains water;
- **Reduced** requirements for stormwater outflow;
- Increased water storage in times of drought and mains water failure;
- Increased pluvial flash flood protection.

Stage 1a: Interdependencies

Underground space

Stage 2: Identify Necessary conditions (NC)

•Social (e.g. demographics, values, equity, public attitude, user-behavior)

- •Technology (e.g. type, efficiency)
- •Environment Natural and Built (e.g. climate, local resources, built form)

• Economic (e.g. cost, affordability, payback)

- •Politics and Governance (e.g. regulations, laws, standards)
- NC1 Non-Potable demand must remain
- NC2 Enough water must be collected
- NC3a Enough water must be stored for supply
- NC3b Enough water must be stored for pluvial flash flood protection
- NC4 System must be economically viable
- NC5 System must be publically acceptable
- NC6 Policy for adoption of systems must remain in place
- NC7 Systems must be maintained

Stage 3: Necessary conditions (future demand)

Step 3: Necessary conditions (future demand)

Driver	Operating condition(s)		Units of measure		Scenarios				
				Α	В	С	D	E	
Social	End-user	WC	Flushes/day		4.42 (all scenarios)				
	behaviour ²	Bath	Capacity filled*	d* 0.11 (all scenaric					
		Shower	Minutes/shower*		4.37 (all scenarios)**				
		Washing machine	Frequency of use		2.10	(all scei	narios)	s)	
		Dishwasher	Frequency of use		3.60	(all scei	narios)		
Technology	Technological	WC	Liter/flush	6	6	4.5	4.5	2.6	
	efficiency ¹	Bath	Liter capacity	230	230	230	160	97	
		Shower	Liters/minute	24	12	8	8	6	
		Washing machine	Liters/kg	13	13	10	6.1	s) s) s) <u>2.6</u> 5 2.6 97 6 6.1 0.7 1 76 24	
		Dishwasher	Liters/place setting	1	1	1	1		
	Total	potable water demand	l/person/day	199	148	117	101	76	
	Total non-	potable water demand	l/person/day	54	54	48	41	24	

Increasing efficiency

What happens to demands in the future?

Step 3: Necessary conditions (localised)

Driver	Operating condition(s)		Units of measure	Scenarios					
				Α	В	С	D	Е	
Environment	Climate	Rainfall	mm/day mm/day mm/day mm/day		(Lanca (Birming (Barcel (Malm	ster sce ham sc ona sce nö scen	enarios) enarios) enarios) arios)		
	Built form	Roof space Roof type Roof material	m² % water capture % water capture		50 (a 90 (al 90 (al	III scena II scena I scena	arios) rios) ⁵ rios) ⁵		
Social	Demographics	Occupancy	Occupants/dwelling Occupants/dwelling Occupants/dwelling	2.4 (UK scenarios) ³ 2.6 (Barcelona scenarios) ⁴ 2.0 (Malmö scenarios) ³		4			

What other conditions should we include?

Step 3: Necessary conditions (localised)

Location	Demand type	Units of measure	Scenarios					
		(hh = household)	Α	В	С	D	Е	
UK	Potable	l/hh/day	418	311	246	212	160	
	Non-potable	l/hh/day	113	113	101	86	50	
Spain	Potable	l/hh/day	517	385	299	270	198	
	Non-potable	l/hh/day	140	<u>140</u>	125	107	62	
Sweden	Potable	l/hh/day	398	296	230	208	152	
	Non-potable	l/hh/day	108	108	96	82	48	

Step 3: Necessary conditions (tank sizes)

Location		S	Scenario	S	
	Α	В	С	D	Е
Lancaster, UK	2063	2063	1567	1253	931
Birmingham, UK	1526	1526	1526	1253	931
Barcelona, Spain	1436	<u>1436</u>	1436	1436	1153
Malmö, Sweden	1359	1359	1359	1194	887

How big should tanks be in each location?

Stage 4: Risk of failure (RWH and Stormwater)

Step 5: Modifying solutions (Barcelona)

Location	Scenarios						
	Α	В	С	D	Е		
Lancaster, UK	44	44	33	27	20		
Birmingham, UK	68	68	51	41	31		
Barcelona, Spain	89	<u>89</u>	68	54	40		
Malmö, Sweden	72	72	55	44	33		

How big should roofs be in order to meet yearly demands?

Step 5: Modifying solutions (Barcelona)

(all tanks = 1496 I)

(sized for 5% rain collection)

 By changing technology, user behavior and location we can understand better *future requirements* (above and below ground).

oThe UF methodology provides a framework for testing the and *resilience* of utility infrastructure provision adopted today in the name of *sustainability*.

o The UF tool is necessary for quantitative futures analysis.

 The UF methodology helps to *raise questions* that wouldn't normally be asked and *enhances the solution* that is put into place.

Thankyou

Engineering and Physical Sciences Research Council